新聞動態

對不起!您訪問的是舊站留存頁,請返回首頁進行良好體驗!

jiantou   鈦合金A-TIG焊接技術的基本原理 2016-5-26
jiantou   對于鈦合金加工中切削的注意事項 2016-5-26
jiantou   鈦合金壓氣機盤等溫鍛造 2016-5-26
jiantou   全世界都在努力開發新的鈦冶金技術 2016-5-25
jiantou   物流金融供應鏈如何服務鈦產業 2016-5-25
jiantou   中國的鈦產業需重新構建誠信體系 2016-5-25
jiantou   α+β型鈦合金的設計研究及性能評價 2016-5-23
jiantou   氫脆在鈦及鈦合金材料中的危害 2016-5-23
jiantou   噴丸對TC4和半TC4鈦板疲勞性能的影響 2016-5-23
產品分類
聯系我們

電話: 0917-2776011     手機: 13629178584
傳真: 0917-2730078
E-mail: [email protected]
地址: 陜西省寶雞市下馬營旭光工業園
在線咨詢:在線咨詢,技術合作

鈦合金A-TIG焊接技術的基本原理

來源:鈦棒,鈦板,鈦管,鈦絲,鈦設備,鈦合金,鈦材 發布時間:2016-5-26 12:08:26
薄膜的存在限制了電弧的導通截面,從而使電弧收縮;其次,由于焊接前鈦合金材料表面覆蓋活性焊劑層,在電弧導通過程中,只有電弧熱先將活性焊劑和鈦金屬熔融,并實現液態鈦把焊劑薄膜的成功擠走,才能實現電弧的成功導通和穩定燃燒。由于熔融的活性焊劑與液態鈦之間有較好的浸潤性,因此,焊劑薄膜又不容易被擠走。其被擠走的越少,焊縫也就越窄,電弧的熱流量也就越集中,熔透的深度越深;第三,A-TIG焊接時,活性焊劑分子蒸汽進入電弧氣氛,增加了弧柱中等離子的導熱性,從而使電弧收縮;第四,電弧熱使活性焊劑分解電離并進入到電弧外圍空間,焊劑離子捕獲電弧外圍電子形成負離子,降低了弧柱外圍空間的電壓,從而使電弧收縮。正是由于上述幾個方面的協同作用,使A-TIG焊接過程中焊接電弧發生明顯收縮,弧柱電流密度增加,致使焊接熔深增加。
 
鈦合金A-TIG焊接技及特點
A-TIG焊接技術是焊接前在待焊接工件上表面涂一層活性焊劑,然后沿焊劑層進行TIG焊的工藝方法。與常規TIG焊接工藝相比,鈦合金A-TIG焊接電弧的穿透能力顯著增強,熱輸入量、焊接變形及應力減小。在焊接相同規格的產品構件時,在相同的焊接電流條件下,可以實現不開坡口單道焊接或使堆焊層數明顯減少,從而提高焊接生產率和產品質量,成倍降低成本。另外,活性焊劑能夠大大減少氬弧焊過程中產生的焊縫氣孔缺陷,從而直接改善焊接接頭及焊接結構的疲勞性能。試驗表明,TC4鈦合金A-TIG焊對接接頭的疲勞極限比常規TIG焊提高16%,可達到母材的90%。目前鈦合金活性焊劑氬弧焊技術已經發展成為一種為保證武器裝備提高質量、提高加工效率和降低成本的新型先進連接制造技術。
 
目前針對TC4鈦合金,多采用氬弧焊或等離子弧焊進行焊接加工,但該兩種方法均需填充焊接材料,由于保護氣氛、純度及效果的限制,帶來接頭含氧量增加,強度下降,且焊后變形較大。采用電子束焊接和激光束焊接,研究了TC4鈦合金的焊接工藝性,實現該種材料的精密焊接。
 
試驗材料為TC4(Ti-6Al-4V);試驗設備:SW1002/7.5-150型真空電子束焊機、RS2000型軸流CO2激光加工機。在試驗實施時,焊接階梯試環,粗找工藝參數,初步確定焊接工藝規范;焊接平板對接試樣,利用X射線探傷儀檢測焊縫內部質量,并進行金相組織分析;焊接對接試環,用三坐標精密測試儀測量焊件軸向與徑向焊接變形。
(1) 焊縫氣孔傾向。焊縫中的氣孔是焊接鈦合金最普遍的缺陷,存在于被焊金屬電弧區中的氫和氧是產生氣孔的主要原因。TC4鈦棒電子束焊接,其焊縫中氣孔缺陷很少。為此,著重就激光焊接焊縫中形成氣孔的工藝因素進行研究。
由試驗結果可以看出,激光焊接時焊縫中的氣孔與焊縫線能量有較密切關系,若焊接線能量適中,焊縫內只有極少量氣孔、甚至無氣孔,線能量過大或過小均會導致焊縫中出現嚴重的氣孔缺陷。此外,焊縫中是否有氣孔缺陷還與焊件壁厚有一定關系,比較試樣試驗結果可看出,隨著焊接壁厚的增加,焊縫中出現氣孔的概率增加。
(2) 焊縫內部質量。利用平板對接試樣,采用電子束焊接和激光焊接來考察焊縫內部質量,經理化檢測,焊縫內部質量經X射線探傷,達GB3233-87 II級要求,焊縫表面和內部均無裂紋出現,焊縫外觀成型良好,色澤正常。
(3) 焊深及其波動情況。鈦合金作為工程構件使用,對焊深有一定要求,否則不能滿足構件強度要求;而且要實現精密焊接,必須對焊深波動加以控制。為此,采用電子束焊接和激光焊接方法分別焊接了兩對對接試環,焊后對試環進行了縱向及橫向解剖,來考察焊深及焊深波動情況,結果表明,電子束焊接焊縫平均焊深可達2.70mm以上,焊深波動幅度為-5.2~+6.0%,不超過±10%;激光焊接焊縫平均焊深約為2.70mm,焊深波動幅度為- 3.8~+5.9%,不超過±10%。
(4) 接頭變形分析。利用對接試環來考察接頭焊接變形,檢測了對接試環的徑向及軸向變形,結果表明,電子束焊接和激光焊接的變形都很小。電子束焊接的徑向收縮變形量為f 0.05~f 0.09mm,軸向收縮量為0.06~0.14mm;激光焊接的徑向收縮變形量為f 0.03~f 0.10mm,軸向收縮變形量為0.02~0.03mm。
(5) 焊縫組織分析。經理化檢測,焊縫組織為a+b,組織形態為柱狀晶+等軸晶,有少量的板條馬氏體出現,晶粒度與基體接近,熱影響區較窄,組織形態和特征較為理想。
 
國外技術發展現狀
活性焊劑最先是由烏克蘭巴頓焊接研究所于60年代研制出來的。其最初的研制目的是為了通過在焊縫區添加鹵化物以改善鈦合金TIG焊時焊縫中的氣孔問題。試驗結果表明,添加的鹵化物在抑制鈦合金焊縫氣孔的同時,還影響了焊縫的成形:在其他條件等同的情況下,焊縫熔深(h)增加,熔寬(b)減小,焊縫形狀系數(ψ=b/h)也相應減小。此外,焊接時熱輸入(q/V)也相應降低。鑒于添加鹵化物所帶來的一系列積極效果,巴頓所于1964年開發了第一種多元活性焊劑產品——AHT-9A,用于鈦合金焊接。目前,其A-TIG焊工藝已通過試驗確認,并用于俄羅斯航空、航天、化工、壓力容器、電力設備、核電設施等領域。美國在氬弧焊用活性焊劑的研究方面比烏克蘭相對落后。但目前美國已利用開發出的不銹鋼與碳鋼氬弧焊用活性焊劑進行雙體船殼體、油輪、核反應容器、壓力容器等的建造;海軍方面正使用該焊劑焊接艦船及潛艇用管道系統和某些零部件。
今天广西快十开奖结果